Multi-objective Optimization for Incremental Decision Tree Learning
نویسندگان
چکیده
Decision tree learning can be roughly classified into two categories: static and incremental inductions. Static tree induction applies greedy search in splitting test for obtaining a global optimal model. Incremental tree induction constructs a decision model by analyzing data in short segments; during each segment a local optimal tree structure is formed. Very Fast Decision Tree [4] is a typical incremental tree induction based on the principle of Hoeffding bound for node-splitting test. But it does not work well under noisy data. In this paper, we propose a new incremental tree induction model called incrementally Optimized Very Fast Decision Tree (iOVFDT), which uses a multi-objective incremental optimization method. iOVFDT also integrates four classifiers at the leaf levels. The proposed incremental tree induction model is tested with a large volume of data streams contaminated with noise. Under such noisy data, we investigate how iOVFDT that represents incremental induction method working with local optimums compares to C4.5 which loads the whole dataset for building a globally optimal decision tree. Our experiment results show that iOVFDT is able to achieve similar though slightly lower accuracy, but the decision tree size and induction time are much smaller than that of C4.5.
منابع مشابه
MMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملMinimizing Structural Risk on Decision Tree Classification
Tree induction algorithms use heuristic information to obtain decision tree classification. However, there has been little research on how many rules are appropriate for a given set of data, that is, how we can find the best structure leading to desirable generalization performance. In this chapter, an evolutionary multi-objective optimization approach with genetic programming will be applied t...
متن کاملAn optimization technique for vendor selection with quantity discounts using Genetic Algorithm
Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...
متن کاملA New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملBrain-Computer Evolutionary Multi-Objective Optimization (BC-EMO): a genetic algorithm adapting to the decision maker
The centrality of the decision maker (DM) is widely recognized in the Multiple Criteria Decision Making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of Reactive Search Optimization (RSO) for evolutionary interactive multi-ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012